Интернет-магазин радиодеталей и электронных компонентов
8 (800) 555-84-55
Будни: 08:30-19:00 МСК
info@dip8.ru
Войти
Главная
Загрузить BOM
Распродажа
О нас
Доставка
Как заказать
Дистрибуция
Производители
Контакты
+  ЕЩЕ
    Избранные товары 0
    Корзина 0
    Корзина 0
    Список товаров пуст

    Сюда будут складываться Ваши товары «Под заказ»
    здесь их все можно будет заказать одним нажатием.

    Каталог
    Интернет-магазин радиодеталей и электронных компонентов
    8-800-555-84-55
    Избранные товары 0 Корзина 0
    Корзина 0
    Список товаров пуст

    Сюда будут складываться Ваши товары «Под заказ»
    здесь их все можно будет заказать одним нажатием.

    Интернет-магазин радиодеталей и электронных компонентов
    Корзина 0
    Список товаров пуст

    Сюда будут складываться Ваши товары «Под заказ»
    здесь их все можно будет заказать одним нажатием.

    Избранные товары 0 Корзина 0
    Телефоны
    8-800-555-84-55
    • Личный кабинет
    • Корзина0
    • Избранные товары0
    • 8-800-555-84-55
    Контактная информация
    Будни: 09:00-18:30 МСК
    info@dip8.ru
    • Вконтакте
    • Telegram
    • YouTube
    • RuTube

    Калькулятор колебательного контура

    Главная
    —
    Электротехнические калькуляторы
    —Калькулятор колебательного контура

    При помощи калькулятора расчета колебательного контура (LC-контура) можно рассчитать значение резонансной частоты, индуктивности или емкости, по двум любым известным значениям. Расчет параметров выполняется по формуле Томсона, на выбор доступны вычисления во всех распространенных единицах измерений, включая базовые.

    Вид расчета
    Входные данные
    Результат

    Что такое резонансный колебательный контур?

    Резонансный колебательный контур — это электрическая схема, в которой соединены катушка индуктивности (L) и конденсатор (C). Эти два элемента образуют систему, способную накапливать и обмениваться энергией.

    Конденсатор хранит энергию в электрическом поле (как батарейка на короткое время), катушка хранит энергию в магнитном поле. Когда конденсатор разряжается через катушку, его энергия превращается в магнитное поле катушки. Затем катушка «отдает» энергию обратно, заряжая конденсатор, но уже с противоположным знаком. Этот процесс повторяется, и в цепи возникают колебания напряжения и тока.

    Если в системе есть потери (а в реальности они всегда есть), колебания постепенно затухают. Но если добавить питание на нужной частоте, можно поддерживать их бесконечно.

    Колебательные контуры применяются при:

    • Фильтрация сигналов. Контур пропускает только определенную частоту (или узкий диапазон частот) и подавляет остальные. В радиоприемниках он помогает «поймать» нужную радиостанцию среди десятков других. В усилителях позволяет убрать лишние шумы.
    • Генерация колебаний. В составе генераторов контур задает частоту выходного сигнала. Именно так создаются радиопередатчики, кварцевые генераторы и другие источники стабильных колебаний.
    • Энергетические системы. В системах беспроводной передачи энергии (например, зарядка смартфонов без проводов) резонансные контуры позволяют эффективно передавать энергию между катушками.
    • Согласование цепей. Контур помогает согласовать различные части схемы, чтобы они работали на одной частоте без потерь.

     

    Как рассчитать колебательный контур?

    Частота

    Основой всех вычислений является формула резонансной частоты колебательного контура (формула Томсона):

    f = 1 / (2 × π × √[L × C])

    • f — резонансная частота, Гц;
    • L — индуктивность катушки, Гн;
    • C — емкость конденсатора, Ф.

    Эта формула связывает три ключевых параметра контура. Зная любые два, можно вычислить третий.

    Эта формула справедлива для идеального LC-контура, в котором пренебрегают активным сопротивлением проводов, потерями в диэлектрике конденсатора и сердечнике катушки, а также собственными емкостями и индуктивностями. В реальных схемах результаты могут несколько отличаться — в катушке всегда есть активное сопротивление обмотки, оно снижает добротность контура и чуть уменьшает частоту, в конденсаторах есть утечки и паразитная индуктивность выводов, на высоких частотах это особенно заметно.

    Формула Томпсона, является частным случаем формулы круговой (циклической) частоты, которая применима к резонансному контуру.

     

    Индуктивность

    Возводим исходную формулу в квадрат, чтобы избавиться от корня:

    f² = 1 / ([2π]² × L × C)

    Далее выражаем индуктивность:

    L = 1 / ([2π]² × f² × C)

    L = 1 / (4 × π² × f² × C)

     

    Емкость

    Аналогично, возводим формулу в квадрат, чтобы избавиться от корня:

    f² = 1 / ([2π]² × L × C )

    Далее выражаем емкость:

    C = 1 / ([2π]² × f² × L)

    C = 1 / (4 × π² × f² × L)

    Задать вопрос
    Оставить отзыв
    Новости
    31 октября 2025
    Появилась возможность загрузить BOM-список на нашем сайте!
    29 октября 2025
    Как мы работаем в ноябрьские праздники
    30 сентября 2025
    Обновление условий заказа: минимальная сумма 500 руб.
    Статьи
    11 ноября 2025
    Монтаж электронных компонентов — виды монтажа на плату, способы пайки, типы корпусов
    10 сентября 2025
    Транзисторы — что это, характеристики, виды
    18 апреля 2025
    Расшифровка датакода микросхемы
    Будьте в курсе наших акций и новостей
    Подписаться
    Интернет-магазин
    Автоматика
    Вентиляторы
    Измерения
    Инструменты и материалы
    Источники питания
    Крепеж и корпуса
    Оптоэлектроника
    Пассивные компоненты
    Переключатели
    Полупроводники
    Преобразователи звука
    Провода и кабели
    Разъемы
    Реле
    Электротехника
    О Компании
    О DIP8
    Новости
    Контакты
    Дистрибуция
    Договор публичной оферты
    Политика конфиденциальности
    Покупателю
    Как оформить заказ
    Способы оплаты
    Способы доставки
    Возврат и обмен
    Калькуляторы
    Справочник SMD
    Статьи
    Глоссарий
    Шаблоны бланков
    Интернет-магазин электронных компонентов "DIP8.RU"
    8 (800) 555-84-55
    info@dip8.ru
    115230, Россия, Москва, ул. Электролитный проезд, 3с83
    • Вконтакте
    • Telegram
    • YouTube
    • RuTube
    Подписаться на рассылку
    2007-2025 © Интернет-магазин электронных компонентов «DIP8.RU» - Проект ООО «Группа Айтекс»
    Я соглашаюсь с тем, что владелец сайта использует файлы cookie для повышения удобства работы на сайте и сервис Яндекс.Метрика. Оставаясь на сайте, я соглашаюсь с политикой их применения.